KATEDRA WYTRZYMAŁOŚCI MATERIAŁÓW I METOD KOMPUTEROWYCH MECHANIKI Wydział Mechaniczny Technologiczny POLITECHNIKA ŚLĄSKA W GLIWICACH

PRACA DYPLOMOWA MAGISTERSKA

<u>Temat</u>: Modelowanie procesu krzepnięcia żeliwa z wykorzystaniem pakiet MARC/MENTAT.

Spis treści:

- Wstęp teoretyczny. Opis matematyczny krzepnięcia odlewu w formie .
- 2. Przykład obliczeniowy. Porównanie wyników obliczeń za pomocą programu Mathcad i pakietu Marc/Mentat :
 - warunki brzegowe I i II.
- Model numeryczny krzepnięcia żeliwa w formie. Porównanie wyników obliczeń za pomocą MRS oraz MES (pakiet Marc/Mentat).
- 4. Modele krzepnięcia żeliwa w formie o różnych kształtach:
 - przykłady obliczeniowe (zadanie 2D),
 - przykłady obliczeniowe (zadanie **3D**).
- 5. Wnioski.
- 6. Literatura.

1. Wstęp teoretyczny.

Opis matematyczny procesu krzepnięcia odlewu w formie.

Równanie różniczkowe opisujące nieustalone pole temperatury w obszarze krzepnącego odlewu przyjmuje postać:

$$X \in \Omega: c(T)\rho(T) \frac{\partial T(X,t)}{\partial t} = div [\lambda(T)gradT(X,t)] + Q(X,t) \quad (1)$$

gdzie: X - punkt obszaru odlewu; T – temperatura; t – czas; c(T) [J/kgK] – ciepło właściwe; ρ [kg/m³] – gęstość; $\lambda(T)$ [W/mK] – współczynnik przewodzenia ciepła; Q(X,t) [W/m³] – funkcja źródła;

Krzepnięcie typowych stopów zachodzi w interwale temperatury, który określają temperatury likwidusu T_L (początek krzepnięcia) i solidusu T_S (koniec krzepnięcia). Stan ciekły odpowiada temperaturom T>T_L, a stan stały temperaturom T<T_S.W przedziale (T_S,T_L) odpowiadającym strefie dwufazowej zachodzi proces krzepnięcia i wydziela się ciepło utajone.

Funkcja źródła w równaniu (1) jest funkcja postaci:

$$Q(X,t) = L \frac{\partial S(X,t)}{\partial t}$$
⁽²⁾

gdzie: S(X,t) jest lokalnym udziałem fazy stałej w otoczeniu rozważanego punktu X w obszarze odlewu.

W modelach makroskopowych krzepnięcie stopów zakłada się, że lokalny udział ciała stałego (cieczy) jest funkcja temperatury S=f(T) w rozważanym punkcie stąd wynika, że:

$$Q(X,t) = L \frac{\partial S(X,t)}{\partial t} = L \frac{\partial T(X,t)}{\partial t} \cdot \frac{dS(T)}{dT}$$
(3)

Przy powyższym założeniu człon źródłowy w równaniu przewodnictwa można "dołączyć" do lewej strony tego równania i otrzymuje się :

$$X \in \Omega: \left[c(T)\rho(T) - L\frac{\partial S(X,t)}{\partial t} \right] \frac{\partial T(X,t)}{\partial t} = div \left[\lambda(T)gradT(X,t) \right]$$
(4)

Występujący w ostatnim równaniu parametr termofizyczny:

$$C(T) = c(T)\rho(T) - L\frac{\partial S(X,t)}{\partial t}$$
(5)

nazywamy zastępczą pojemnością cieplną.

W literaturze istniej wiele hipotez dotyczących funkcji opisujących zastępczą pojemność cieplną strefy przejściowej. Najprostszą z nich jest **hipoteza Wiejnika**. Uwzględnienie stałych wartości parametrów termofizycznych podobszaru i krzepnącego odlewu (faza ciekła, obszar dwufazowy, faza stała) prowadzi do następującej definicji *zastępczej pojemności cieplnej:*

$$C(T) = \begin{cases} c_{L} \rho_{L}; T > T_{L} \\ c_{P} \rho_{P} + \frac{L}{T_{L} - T_{S}}; T_{S} \leq T \leq T_{L} \\ c_{S} \rho_{S}; T \leq T_{S} \end{cases}$$
(6)

gdzie: c_L, c_P, c_S --ciepła właściwe fazy ciekłej ,przejściowej i stałej;

W przypadku gdy mamy do czynienia z krzepnięciem żeliwa zastosowanie hipotezy związanej z zastępczą pojemnością cieplną jest możliwe pod warunkiem, że temperatura przemiany eutektycznej T_{eu} w której wydziela się ciepło krzepnięcia L_{eu} "rozszerzymy" na pewien przedział $(T_{eu} - \Delta T, T_{eu} + \Delta T)$, w którym ta przemiana będzie występowała. Przemiana austenityczna w żeliwie występuje w przedziale temperatur $[T_{eu} + \Delta T, T_{L}]$ gdzie T_{L} jest temperaturą początku krzepnięcia (temperatura likwidusu), a ciepło tej przemiany oznaczamy przez L_{aus} , natomiast faza stała związana jest z temperaturami niższymi od $[T_{eu} - \Delta T]$ (Rys.2)

Rys.2.Zastępcza pojemność cieplna (żeliwo)

Model matematyczny krzepnięcia odlewu (wykonanego z żeliwa) w masie formierskiej opisuje następujący układ równań:

równanie dla obszaru odlewu:

$$X \in \Omega: C(T) \frac{\partial T(X,t)}{\partial t} = div [\lambda(T)gradT(X,t)];$$
(7)

gdzie C(T) jest zastępczą pojemnością cieplną definiowaną wzorem:

$$C(T) = \begin{cases} c_{s} \rho_{s}; T < T_{eu} - \Delta T; \\ c_{eu} \rho_{eu}; T_{eu} - \Delta T \leq T \leq T_{eu} + \Delta T \\ c_{aus} \rho_{aus}; T_{eu} + \Delta T \leq T < T_{L} \\ c_{L} \rho_{L}; T \geq T_{L} \end{cases}$$
(8)

- równanie dla obszaru masy formierskiej:

$$X \in \Omega_m : c_m \rho_m \frac{\partial T_m(X,t)}{\partial t} = \lambda_m div [grad T_m(X,t)]; \quad (9)$$

gdzie : λ_m , c_m – parametry termofizyczne tego podobszaru;

Warunki brzegowe:

 warunek ciągłości strumienia ciepła i temperatury na powierzchni kontaktu między odlewem i formą (*warunek brzegowy IV rodzaju*):

$$X \in \Gamma_{c}(t) : \begin{cases} -\lambda n \cdot gradT(X,t) = -\lambda_{m}n \cdot gradT_{m}(X,t); \\ T(X,t) = T_{m}(X,t); \end{cases}$$
(10)

- warunek brzegowy na powierzchni zewnętrznej masy formierskiej:

$$\Phi[T_m(X,t), n \cdot gradT_m(X,T \setminus t)] = 0$$
⁽¹¹⁾

Warunki początkowe:

- dla *t*= 0 :

$$T(X,0) = T_0(X) ;$$

$$T_m(X,0) = T_{m0}(X) ;$$
(12)

2. Przykład obliczeniowy. Porównanie wyników obliczeń za pomocą programu Mathcad i pakietu Marc/Mentat

(warunki brzegowe l i ll)

Dla elementu przedstawionego na rys. 3 wyznaczone zostanie pole temperatury dla stanu nieustalonego

Warunki brzegowe:

Wb1 – warunek brzeg. I rodz. $T1 = 200 [^{0}C];$ Wb2 - warunek brzeg. II rodz.

Pole temperatur po czasie:

czas t = 75.551 s

Model w programie Mentat:

Wyniki otrzymane za pomocą programu Marc/Mentat **t = 75,515** s

Porównanie wyników:

(warunki brzegowe I i II).

Nr.węzła	Temperatury t=75.551[s]		Temperatury t=151.102[s]		Temperatury t=226.545[s]	
	Mathcad	MARC	Mathcad	MARC	Mathcad	MARC
1	200	200	200	200	200	200
2	200	200	200	200	200	200
3	14,286	14,2864	114,785	114,797	142,735	142,797
4	14,286	14,2864	114,785	114,797	142,735	142,797
5	64,28	64,2862	64,34	64,386	109,805	109,841
6	200	200	200	200	200	200
7	200	200	200	200	200	200
8	64,28	64,2862	64,34	64,386	109,805	109,841

Tab.1. Porównanie wyników otrzymanych za pomocą pakietu MARC/MENTAT oraz programu Mathcad.

3. Model numeryczny krzepnięcia żeliwa w formie. Porównanie wyników obliczeń za pomocą MRS oraz MES

Dla odlewu żeliwnego krzepnącego w formie przedstawionego na rys.4 wyznaczone zostało pole temperatury dla następujących danych : **Wymiary:** a=0,08 [m] b=0,05[m] c=0,03[m]

Dane materiałowe:

żeliwo :

 $λ_L = λ_{aus} = λ_{eu} = λ_S = 40 [W/mK];$ $T_L = 1200 [^0C]$ $T_S = 1145 [^0C]$ $L_{aus} = 6,35*10^8 [J/kg]$ $L_{eu} = 1,571*10^8 [J/kg]$ $c_s \rho_s = 4,932*10^6 [J/m^3K]$ $c_L \rho_L = 5,652*10^6 [J/m^3K]$ forma : $λ_m = 1.5 [W/mK];$

 $c_m \rho_m = 1.75^* 10^6 \, [\text{J/m}^3\text{K}]$

Warunki początkowe:

 $T_0 = 1350 [^0C]$ $T_{m0} = 20 [^0C]$

Rys.4

- Ω_1 obszar formy
- Ω_2 obszar odlewu

Model otrzymany w programie Marc/Mentat:

Podział na elementy skończone:

Pola temperatury po czasie t = 20s

Pola temperatury po czasie t = 100s

Porównanie wyników: (żeliwo) Ω_1 Ω_1 Ω_1 Ω_2

Tab.2. Porównanie wyników MES i MRS (żeliwo)

Bunkt pomiarowy	Temperatury t=20[s]		Temperatury t=100[s]		Temperatury t=200[s]	
Punkt pomiarowy	MRS	MES	MRS	MES	MRS	MES
1	1216,55	1214,84	1150,98	1149,45	1145,42	1145,23
2	1215,24	1213,8	1150,96	1149,43	1140,3	1142,69
3	1211	1209,81	1150,66	1149,02	1131,34	1136,75
4	1204,37	1203,82	1149,18	1148,17	1122,36	1127,17
5	1195,96	1196,35	1144,34	1144,31	1113,23	1117,39
6	1183,79	1185,28	1132,84	1134,45	1103,73	1107,29
7	1168,19	1169,67	1118,95	1119,75	1093,59	1096,21
8	1150,77	1149,15	1103,95	1102,97	1082,33	1083,58

Rys.5.Temperatury w punktach pomiarowych 1,2,3,4,5,6,7,8.

Porównanie wyników:

(forma piaskowa)

Tab.3. Porównanie wyników MES i MRS (forma piaskowa)

Punkt pomiarowy	Temperatury t=20[s]		Temperatury t=100[s]		Temperatury t=200[s]	
	MRS	MARC	MRS	MARC	MRS	MARC
9	1009,59	1008,36	1053,09	1052,63	1047,678	1049,58
10	715,267	721,487	913,279	914,433	946,864	948,739
11	467,688	478,583	779,464	782,368	849,066	851,102
12	283,604	295,744	654,91	659,508	755,988	758,289
13	161,89	172,617	541,885	547,96	668,839	671,392
14	89,91	97,946	441,726	448,991	588,451	591,121
15	51,59	56,868	354,99	362,877	515,389	517,903
16	33,13	36,22	281,585	289,655	450,036	451,987
17	25,04	26,668	220,822	228,633	392,641	393,502
18	21,79	22,573	172,058	178,97	343,359	342,498
19	20,59	20,936	133,851	139,449	302,272	298,966
20	20,18	20,323	105,099	108,89	269,416	271,19
21	20,052	20,079	84,674	86,109	244,794	247,563
22	20,004	20,024	71,629	73,485	228,39	228,049

Rys.6.Temperatury w punktach pomiarowych 9,10,....,22.

4. Modele krzepnięcia żeliwa w formie o różnych kształtach:

Przykłady nr.1 (zadanie 2D)

Dla odlewu żeliwnego krzepnącego w formie przedstawionego na rys.7 wyznaczone zostało pole temperatur dla następujących danych :

Dane materiałowe:

żeliwo :

λ = 40 [W/mK]; $c_s ρ_s = 4,932*10^6 [J/m^3K]$ $c_L ρ_L = 5,652*10^6 [J/m^3K]$ forma : $λ_m = 1.5 [W/mK];$

Warunki początkowe: $T_0 = 1350 [^{0}C]$ $T_{m0} = 20 [^{0}C]$

 $c_m \rho_m = 1.75^* 10^6 \, [J/m^3 K]$

Rys.7

- Ω_1 obszar formy
- Ω_2 obszar odlewu

Model otrzymany w programie Marc/Mentat:

Podział na elementy skończone:

Pola temperatury po czasie **t = 40s**

Przykłady nr.2 (zadanie 2D)

Dla odlewu żeliwnego krzepnącego w formie przedstawionego na rys.8 wyznaczone zostało pole temperatury dla następujących danych :

Dane materiałowe:

żeliwo :

λ = 40 [W/mK]; $c_s ρ_s = 4,932*10^6 [J/m^3K]$ $c_L ρ_L = 5,652*10^6 [J/m^3K]$ forma : $λ_m = 1.5 [W/mK];$ $c_m ρ_m = 1.75*10^6 [J/m^3K]$

Warunki początkowe: T₀ =1350 [⁰C] T_{m0} = 20 [⁰C]

Rys.8

- Ω_1 obszar formy
- Ω_2 obszar odlewu

Model otrzymany w programie Marc/Mentat:

Podział na elementy skończone:

Pola temperatury po czasie t = 50s

Przykłady nr.3 (zadanie 2D)

Dla odlewu żeliwnego krzepnącego w formie przedstawionego na rys.9 wyznaczone zostało pole temperatury dla następujących danych :

Dane materiałowe:

żeliwo :

 $\lambda = 40 [W/mK];$ $c_{s}\rho_{s} = 4,932*10^{6} [J/m^{3}K]$ $c_{L}\rho_{L} = 5,652*10^{6} [J/m^{3}K]$ forma: $\lambda_{m} = 1.5 [W/mK];$ $c_{m}\rho_{m} = 1.75*10^{6} [J/m^{3}K]$

Warunki początkowe: $T_0 = 1350 [^{0}C]$ $T_{m0} = 20 [^{0}C]$

 Ω_1 - obszar formy

 Ω_2 - obszar odlewu

Model otrzymany w programie Marc/Mentat:

Pola temperatury po czasie t = 100s

zeliwo

forma

none

Przykłady nr.4 (zadanie 3D)

Dla odlewu żeliwnego krzepnącego w formie przedstawionego na rys.10 wyznaczone zostało pole temperatury dla następujących danych :

Wymiary : a=0,025 [m], b=0,015[m], c=0,020[m], d=0,065[m] e=0,005[m], **Dane materiałowe:**

żeliwo :

 $λ_L = λ_{aus} = λ_{eu} = λ_S = 40 [W/mK];$ $T_L = 1200 [^0C]$ $T_S = 1145 [^0C]$ $L_{aus} = 6,35*10^8 [J/kg]$ $L_{eu} = 1,571*10^8 [J/kg]$ $c_s \rho_s = 4,932*10^6 [J/m^3K]$ $c_L \rho_L = 5,652*10^6 [J/m^3K]$ forma : $λ_m = 1.5 [W/mK];$

 $c_m \rho_m = 1.75^* 10^6 \, [\text{J/m}^3\text{K}]$

Warunki początkowe: $T_0 = 1350 [^{0}C]$ $T_{m0} = 20 [^{0}C]$

Rys.10. Dolna część formy wraz z odlewem: (Ω_1 - obszar odlewu, Ω_2 - obszar formy)

Rys.11. Dolna część formy wraz z odlewem: a) rzut z góry b) przekrój

Model otrzymany w programie Marc/Mentat:

Podział na elementy skończone

Pola temperatury po czasie **t = 100s**:

Przykładowy rozkład pola temperatury w samej formie (czas **t = 100s)**

Przykładowy rozkład pola temperatury na przekroju krzepnącego odlewu (czas **t = 80s)**

Przykładowy rozkład pola temperatury w dolnej części formy oraz na przekroju odlewu (czas **t = 100s)**

Przykłady nr.5 (zadanie 3D)

Dla odlewu żeliwnego krzepnącego w formie o kształcie i wymiarach przedstawionych na rys.12,13a,13b wyznaczone zostało pole temperatury dla następujących danych : Dane materiałowe:

żeliwo :

$$\lambda_{L} = \lambda_{aus} = \lambda_{eu} = \lambda_{S} = 40 \text{ [W/mK]};$$

 $T_{L} = 1200 [^{0}\text{C}]$
 $T_{S} = 1145 [^{0}\text{C}]$
 $L_{aus} = 6,35*10^{8} \text{ [J/kg]}$
 $L_{eu} = 1,571*10^{8} \text{ [J/kg]}$
 $c_{s} \rho_{s} = 4,932*10^{6} \text{ [J/m}^{3}\text{K]}$
 $c_{L} \rho_{L} = 5,652*10^{6} \text{ [J/m}^{3}\text{K]}$
forma :

 $\Lambda_{\rm m}$ = 1.5 [VV/MK]; $c_m \rho_m$ =1.75*10⁶ [J/m³K]

Warunki początkowe: T₀ =1350 [⁰C] T_{m0} = 20 [⁰C]

Rys.13. Dolna część formy wraz z odlewem: a) rzut z góry b) przekrój

Model otrzymany w programie Marc/Mentat:

Podział na elementy skończone

Pola temperatury po czasie t = 10s

Pola temperatury po czasie t = 60s

5.Wnioski

Przeprowadzone w ramach pracy dyplomowej badania pozwalają na sformułowanie następujących wniosków:

- 1. Modelowanie procesu krzepnięcia żeliwa z wykorzystaniem zastępczej pojemności cieplnej, w której przemianę eutektyczną rozszerza się na pewien przedział temperatury $(T_{eu} \Delta T, T_{eu} + \Delta T)$ jest skuteczna metodą "ominięcia" trudności związanych z opisem procesu krzepnięcia zachodzącego w stałej temperaturze.
- Pakiet obliczeniowy MARC/MENTAT można z powodzeniem wykorzystywać do modelowania krzepnięcia stopów przy odpowiednim zdefiniowaniu parametru C(T).
- Wyniki uzyskane za pomocą tego pakietu są czytelne i mogą być przedstawione w różny sposób np. jako kolorowe mapy pola temperatury, krótkie animacje itp. co ułatwia ich weryfikację i dalszą analizę.
- 4. Przeprowadzone obliczenia porównawcze wykonane metodą różnic skończonych i metoda elementów skończonych pokazują, że różnice w otrzymywanych wynikach są bardzo małe.
- Metoda elementów skończonych pozwala na w miarę łatwe uwzględnienie skomplikowanych kształtów odlewów, w przeciwieństwie do metody różnic skończonych.

6.Literatura

- 1. Dobrzański L.A. Metaloznawstwo i obróbka cieplna. Warszawa: WSiP 1997
- Hasik J. Zastosowanie metody różnic skończonych do modelowania procesu krzepnięcia odlewów wykonanych z żeliwa. Praca dyplomowa magisterska, Pol.ŚI., Gliwice 2002
- **3.** Majchrzak E. *Metoda elementów skończonych w przepływie ciepła*. Materiały powielane, Gliwice 2002
- **4.** Marciniak J. *Ćwiczenia laboratoryjne z metaloznawstwa*. Gliwice: Pol.Śl.,1995 Skrypty uczelniane nr 1922
- Mochnacki B., Suchy J. Modelowanie i symulacja krzepnięcia odlewów. Warszawa: WNT 1993
- 6. Mendakiewicz J. *Symulacja krzepnięcia żeliwa jako sposób oceny jego skłonności do zabieleń.* Praca doktorska, Politechnika Śląska, Gliwice 1994
- **7.** Mendakiewicz J., Piasecka Belkhayat A., *Modelling of cast iron solidification using the fixed domain approach*. Z.N.Pol. Opolskiej, Mechanika, 72, Opole, 2001, 205-208
- 8. Ražnjević K. Tablice cieplne z wykresami. Warszawa: WNT 1966
- 9. Teodorczyk A. Termodynamika techniczna. Warszawa: WSiP 1997
- 10. Program Marc/Mentat, Training guide. Help, 2001

Dziękuje za uwagę